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Abstract
Using a sample of 3376 quasar spectra from the Sloan Digital Sky Survey

we fit the flux distribution function assuming a lognormal density distribution
and photoionization equilibrium. From this we derive new constraints on the
mean optical depth, equation of state, and variance of the density field as a
function of redshift.



The life of a wave packet

1. Quasars emit a broad spectrum of photons (oversimplified at left by a flat
spectrum except for Lyα emission in the vicinity of the quasar itself). The
photons redshift as they travel through the expanding universe.

2. Photons of wavelength λ = 1215.67 Å are readily absorbed by neutral hydrogen
(the Lyα transition). As the spectrum of photons passes through the intergalactic
medium, photons with λ = 1215.67 Å in the frame of the gas are scattered.

3. When we finally measure the spectrum on earth, we see a band of many
Lyα absorption lines called the Lyman alpha forest.

[Missing from this slide is the accompanying animated figure]
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Our normalization procedure

Each spectrum is initially processed by the SDSS Pipeline [Frieman et al. & the
SDSS team, 2002]. We then normalize each spectrum relative to an estimate of
a “mean spectrum” based on knowledge of the entire sample [Burles et al., in
preparation]. This method is complementary to direct optical depth measurements
using true continuum normalization [Bernardi et al., 2002].

Spectra are fit using a PCA technique
in the region redward of the quasar
Lyα emission [green curve]. This fit is
then used to predict the normalization
[blue curve] in the Lyα forest.

Resulting normalized flux in the
Lyα forest:

δflux =
starting spectra (black)
predicted norm (blue)

− 1
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Slicing each spectrum into redshift bins

• We next separate the pixels of each spectrum into bins corresponding to
Lyα absorption by the intergalactic medium in different redshift shells.

• For example, the pixels in the region between the first two dotted lines, shown
in red in the above Lyα forest spectrum, correspond to Lyα absorption in the
redshift range z = 2.65 to z = 2.77. Note that this redshift is not the redshift of
the quasar, but rather the redshift of the intervening absorber.

• Using this method we chop each spectra into sets of pixels belonging to each of
18 different redshift bins in the range z = 2.1 to z = 4.4. Thus, in the end, each
redshift bin has pixels from many different spectra.
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Determining the flux distribution function

• The distribution of fluxes measured in a set of pixels is a crude measure of the
Lyα optical depth, and thus the dark matter density field, at that redshift.

• The flux distribution function
(FDF) results from histogramming
the set of flux points in each
redshift bin.

• At right is an example of one such
histogram, from the redshift bin
2.65 < z < 2.76 (containing 105

pixels).
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• Our goal is to find a model for the observed flux resulting from a distribution of
density fluctuations in the IGM that correctly reproduces the FDF of the data.
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Modeling the flux distribution function

• Following many before us [Bi & Davidsen, 1997; Nusser & Haehnelt, 1999], we
model the dark matter density field as a lognormal distribution in ρ/〈ρ〉 (with
variance σ).

• Assuming photoionization equilibrium, the optical
depth τ resulting from this density field is found
from the mean optical depth τ0 and the parameter α:

• The normalized flux F in each pixel is determined
from the optical depth:

τ = τ0

(
ρ

〈ρ〉
)α

F =
e−τ

〈e−τ〉

• For each set of pixels, points are randomly drawn from this flux distribution and
then noise is added that correctly mimics the noise in the real data.

• Since the three parameters in the model (σ, τ0 and α) are degenerate, only
two constraints can be derived from the data. We choose to work with the two
combinations y ≡ ασ and x ≡ τ0 exp(ασ2/2).
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Results

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 2.5 3 3.5 4 4.5

redshift

Parameters resulting in best fit model

y = α σ
x = τ0 exp(α σ2/2) • We determine the best

fit to the FDF at each
redshift bin by finding
values of the parameters x
and y which minimize χ2.

• The error is estimated by
repeating this procedure
on separate subsets of the
data.
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Redshift dependence of the mean optical depth τ0

The equation of state parameter α should fall in the range α = 2 (isothermal) to
α = 1.53 (ideal gas). Evaluating the curve on the previous slide for these values of
α gives our best estimate of the mean optical depth τ0(z):
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Our best fit power-law is
overplotted (solid curves).

• For α = 2:

τ0(z) = 0.0024(1 + z)3.7

• For α = 1.53:

τ0(z) = 0.0021(1 + z)3.7
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This work was done in collaboration with Professor Scott Burles (MIT) and is still
in progress. Please contact kburgess@mit.edu with further questions or to receive a
copy of the preprint once available.

The Sloan Digital Sky Survey (SDSS) is a joint project of The University of
Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group,
The Johns Hopkins University, the Max-Planck-Institute for Astronomy (MPIA),
the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University,
Princeton University, the United States Naval Observatory, and the University of
Washington. Apache Point Observatory, site of the SDSS telescopes, is operated
by the Astrophysical Research Consortium (ARC). Funding for the project has been
provided by the Alfred P. Sloan Foundation, the SDSS member institutions, the
National Aeronautics and Space Administration, the National Science Foundation,
the U.S. Department of Energy, the Japanese Monbukagakusho, and the Max Planck
Society. The SDSS Web site is http://www.sdss.org/.
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